Master production scheduling: bridging high-level plans with execution

3. Master production scheduling (MPS) & rough-cut capacity planning (RCCP)

The role of master production scheduling

Master production scheduling (MPS) bridges high-level production planning with detailed execution. It breaks down the aggregated demand forecasts which we have defined in the previous section into precise schedules for specific products (or SKUs) over a mid-term horizon (usually 3–12 months).  

A good introductory article to MPS by Allics: https://www.allics.be/blog/basics-of-the-master-production-schedule/  

Rough-cut capacity planning introduction

Rough cut capacity planning is looking into the capacity requirements and utilization rates that the master production schedule would require. It is essentially a check on whether the MPS is indeed feasible.  

Sometimes, the RCCP is considered as the high-level production plan, as defined here by Arkieva for instance.  

Key components of MPS & RCCP 

Inputs into the MPS (mostly the same as in the high-level production planning but with more details) 

  • Demand forecasts: at SKU level, directly from the demand plan or after disaggregation rules 

  • Production policies: make-to-stock (MTS), make-to-order (MTO), or a hybrid policy 

  • Capacity data: machine and labor capacities 

  • Production constraints: lead times, batch sizes, and setup times of machines 

 

Outputs of the MPS: 

  • RCCP alignment: ensuring that the capacity is sufficient without overloading 

  • Prioritization rules: prioritization of products based on demand, profitability, or other business objectives – some rules about what to do in which case 

  • Available-to-promise (ATP): insights into available inventory for unconfirmed orders

Key steps in creating an MPS

  1. Balancing capacity: Validate that the machine and labor capacities can meet the planned production! RCCP involves a rough estimation of required capacity, ensuring no major constraints exist. Unlike before, this should be done at a weekly level here.  

  1. Prioritizing production: Prioritize high-margin or high-demand SKUs while respecting constraints like setup times or production policies. 

  1. Validation and adjustment: Iteratively validate the schedule against capacity constraints and adjust as needed. 

Example for an insulation manufacturing company

The company in our earlier example produced two types of insulation materials: fiberglass sheets and spray foam.  



Here, the MPS needs to look into weekly production requirements and capacity availability.  

Inputs into the plan

Suppose the fiberglass sheets have 3 SKUs, each with a different thickness of the sheet. These are the associated weekly demand & safety stock (16% on top of demand) numbers.

Demand assumptions: 

SKU 

Weekly Demand (Units) 

Safety Stock (Units) 

FG-10mm 

3,125 

500 

FG-20mm 

1,875 

300 

FG-30mm 

1,250 

200 

Production inputs: 

Week 

SKU 

Planned Production (Units) 

Week 1 

FG-10mm 

3,625 

 

FG-20mm 

2,175 

 

FG-30mm 

1,450 

Beginning inventory: 

Suppose there is no beginning inventory for each SKU and that we’re only looking at 1 location: 

SKU 

Beginning Inventory 

FG-10mm 

0 

FG-20mm 

0 

FG-30mm 

0 

Capacity assumptions: 

Capacity Type 

Value 

Machine Rate 

1,500 units/day, operating 5/7 days 

Labor Productivity 

6 hours/unit 

Labor Hours 

45,000 / week 

Material Requirement 

1 kg/unit 

Weekly MPS table at SKU-level 

Here below, we’ll outline the MPS at a weekly level for each SKU, including the weekly demand and production target (considering the safety stock requirement) as well as beginning and ending inventory and the ATP.  

Available-to-promise (ATP) represents the quantity of inventory or production that has not yet been allocated to specific customer orders. It shows how much can still be promised to customers without impacting any other commitments. This can be calculated as: 

ATP = inventory + production cumulative orders

Week 

SKU 

Beginning Inventory 

Weekly Demand 

Safety Stock 

Planned Production 

Ending Inventory 

Available to Promise (ATP) 

1 

FG-10mm 

0 

3,125 

500 

3,625 

500 

500 

1 

FG-20mm 

0 

1,875 

300 

2,175 

300 

300 

1 

FG-30mm 

0 

1,250 

200 

1,450 

200 

200 

2 

FG-10mm 

500 

3,125 

500 

3,625 

1,000 

1,000 

2 

FG-20mm 

300 

1,875 

300 

2,175 

600 

600 

2 

FG-30mm 

250 

1,250 

200 

1,450 

400 

400 

3 

FG-10mm 

1,000 

3,125 

500 

3,625 

1,500 

1,500 

3 

FG-20mm 

600 

1,875 

300 

2,175 

900 

900 

3 

FG-30mm 

450 

1,250 

200 

1,450 

600 

600 

4 

FG-10mm 

1,500 

3,125 

500 

3,625 

2,000 

2,000 

4 

FG-20mm 

900 

1,875 

300 

2,175 

1,200 

1,200 

4 

FG-30mm 

650 

1,250 

200 

1,450 

800 

800 

Weekly RCCP table at SKU-level 

Machine days required: 

Machine days = machine rate / planned production   

Labor hours required: 

Labor hours= planned production × labor productivity (hours/unit) 

Week 

SKU 

Planned Production 

Machine Days Required 

Labor Hours Required 

1 

FG-10mm 

3,625 

2.42 days 

21,750 hours 

1 

FG-20mm 

2,175 

1.45 days 

13,050 hours 

1 

FG-30mm 

1,450 

0.97 days 

8,700 hours 

2 

FG-10mm 

3,625 

2.42 days 

21,750 hours 

2 

FG-20mm 

2,175 

1.45 days 

13,050 hours 

2 

FG-30mm 

1,450 

0.97 days 

8,700 hours 

3 

FG-10mm 

3,625 

2.42 days 

21,750 hours 

3 

FG-20mm 

2,175 

1.45 days 

13,050 hours 

3 

FG-30mm 

1,450 

0.97 days 

8,700 hours 

4 

FG-10mm 

3,625 

2.42 days 

21,750 hours 

4 

FG-20mm 

2,175 

1.45 days 

13,050 hours 

4 

FG-30mm 

1,450 

0.97 days 

8,700 hours 

Utilization and key conclusions 

Capacity Type 

Available 

Required (Max) 

Utilization 

Labor hours 

45,000/week 

43,500/week 

96.67%  

Machine days 

5 days/week 

4.84 days/week 

96.8%  

Both machines and labor are running almost at max capacity. It’s important to make sure that no steps are missed in this planning: if absenteeism or set-up times etc. would not be properly considered, then these production targets cannot be met.  

 

Material availability isn’t yet looked into at this moment. All in all, this plan is not reasonable at all unless significant capacity for both labor and machines is found. 

 

As visually shown in this blog article by Allics, the planned workload vs capacity can be shown for each resource during each specific week to get immediate insights into where the bottlenecks or underutilization are.


Master production schedulingRough cut capacity plan visual by Allics